Energy recovery in the water distribution system by intelligent pressure management

Salomé Parra,
S. Krause, F. Krönlein, F.W. Günther, T. Klunke*

Sanitary Engineering and Waste Management
University of the Federal Armed Forces Munich, Germany

*KSB Aktiengesellschaft, Frankenthal, Germany
Agenda

• Current challenges for drinking water systems and urban infrastructures

• Background of research project EWID
 • approach
 • project plan

• Methods and results

• Conclusions
Current challenges for drinking water systems (and urban infrastructures)

- Climate change (extreme weather events, spread $Q_{\text{min}}/Q_{\text{max}}$, raining events, droughts)
- Demographic change/migration events: increasing/decreasing population → increasing/decreasing drinking water consumption
- Strict requirements for optimizing water supply systems and enhancing the energy efficiency
- Aging of water supply systems

http://www.bmbf.wasserfluesse.de/
Current challenges for drinking water systems

- saving of resources (water & energy)
- supply reliability and safety
- asset management
- costs-effectiveness, fee stability
- compliance with legal requirements
- decrease of government funding
EWID - Energy recovery in the water distribution system by intelligent pressure management

Approach: Improvement of the classic energy-dissipation-based pressure management in the water distribution system by means of valves with the implementation of an energy-based pressure management.
Pressure management

[Guidelines for water loss reduction; GIZ, VAG]

1. Without pressure module
2. Fixed outlet pressure
3. Flow-based/remote-controlled pressure modulation

Excess pressure causes Minimised excess pressure -> minimised leak flow
Project plan

1. Determination of basic data
2. Hydraulic modelling and network characterization
3. System design and development
4. Experimentation and testing
5. Verification on a real network and potential/economic analysis
6. Guideline for planners and consultants
Boundary conditions and potential for involved water utilities

<table>
<thead>
<tr>
<th></th>
<th>AWA</th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure situation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_{in}</td>
<td>8.5 bar</td>
<td>9.4 bar</td>
</tr>
<tr>
<td>p_{out}</td>
<td>3.7 bar</td>
<td>1.0 bar</td>
</tr>
<tr>
<td>Δp</td>
<td>4.8 bar</td>
<td>8.4 bar</td>
</tr>
<tr>
<td>mean flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{m}</td>
<td>1.3 l/s</td>
<td>7.0 l/s</td>
</tr>
<tr>
<td>inhabitants supplied</td>
<td>EW</td>
<td>700</td>
</tr>
<tr>
<td>Theoretical energy yield ($\eta_{\text{tot}} = 50%$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{th}</td>
<td>0.3 kW</td>
<td>3.0 kW</td>
</tr>
</tbody>
</table>

Water IDEAS Conference 2016 Bologna, 20th October 2016 Salomé Parra
Methodology

Case study: Perlenbach-Schafberg (PER)

<table>
<thead>
<tr>
<th></th>
<th>PER</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure situation</td>
<td>p_{in} 9.4 bar, p_{out} 1.0 bar, Δp 8.4 bar</td>
</tr>
<tr>
<td>mean flow</td>
<td>Q_m 7.0 l/s</td>
</tr>
<tr>
<td>inhabitants supplied</td>
<td>EW 1,200</td>
</tr>
<tr>
<td>Theoretical energy yield (n_{tot}=50 %)</td>
<td>P_{th} 3.0 kW</td>
</tr>
</tbody>
</table>

Key data:
- 1,200 inhabitants
- 940 service connections
- 27 km water pipelines
- 4 pressure zones
Methodology

Data analysis and hydraulic modelling

- Base data:
 - GIS network
 - Water outflow, inlet and outlet pressure (PRV)
 - Annual billed water consumption per village, etc.

- Modelling with EPANET 2.0:
 - Evaluate hydraulic situation
 - Identification of critical points
 - Calibration to determine the friction coefficient of the pipelines and verify the input data
 - Predict potential water loss reduction
Methodology

Experimentation and system development

- complete installation is controlled by a PLC (programmable logic controller) provided by EWID partner
- All recorded data (Q, p, T, n, P): collected and visualized on the PC (10 sec. intervals)
Methodology

Optimised pressure control

\[h_v = f(Q) = aQ^2 + bQ + c \]

\[p_{out,target} = p_{crit,limit} + h_v \]

- First approximation: a, b and c (network dependent parameters) derived / calculated from calibrated hydraulic model
- Later on: parameters continuously adjusted using real time measured data as input for the hydraulic model
Results

System configuration and PAT design

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>p_{in}</th>
<th>p_{out}</th>
<th>Δp</th>
<th>p_{crit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>actual</td>
<td>7</td>
<td>9.4</td>
<td>4.0 (constant)</td>
<td>5.4</td>
<td>≈ 10.0</td>
</tr>
<tr>
<td>target</td>
<td>7</td>
<td>9.4</td>
<td>dynamic ≈ 1.0</td>
<td>8.4</td>
<td>8.0 (constant)</td>
</tr>
<tr>
<td>experimentation</td>
<td>7</td>
<td>9.4</td>
<td>dynamic ≈ 6.1</td>
<td>dynamic</td>
<td>2.5 (constant)</td>
</tr>
</tbody>
</table>

![Diagram of system configuration and PAT design](image.png)
Results

Potential and pressure control

- PAT 17 h in operation (7 am – 23 pm)
- Pressure at the critical point successfully maintained at the target value (2.5 bar)
- Due to the low variability in the demand profile: outlet pressure → quite narrow course
- Max 2.2 kW electrical energy recovered and fed back into the grid, when the turbine works under full load ($Q_{\text{PAT}} = 9.7 \text{ l/s}$ and $p_{\text{out}} = 6.1 \text{ bar}$). Total efficiency of the system: approx. 40 %
- A higher energy yield can be achieved by optimizing the electrical and hydraulic losses in the system
Conclusions

• **Functionality of the EWID** successfully verified at the testing plant:
 - Advanced / intelligent pressure management (critical point approach) works
 - Interaction between PRV and PAT works (magnetic valve: drive and shutdown functions)
 - Up to 2.3 kW energy recovery with the applied PAT at the tested hydraulic conditions ($Q_{\text{PAT}} = 9.7 \text{ l/s}$ and $p_{\text{out}} = 6.1 \text{ bar}$). For the real network the potential might be higher!

• **Benefits** of the system:
 - energy recovery
 - water loss reduction (16.5% higher than using classic PRVs) + network alleviation
 - monitoring

• **System is recommended / might be profitable in:**
 - Networks with high operational pressures and high differences in altitude (e.g. mountainous regions)
 - Networks with large differences in the water demand during the day

• **Next steps:** detailed profitability analysis, verification of the system in two real networks (AWA and PER), analysis of options for island operation (decentral energy storage)
M.Sc. Salomé Parra
Universität der Bundeswehr München
Institut für Wasserwesen
Siedlungswasserwirtschaft und Abfalltechnik
Werner-Heisenberg-Weg 39
85577 Neubiberg
Tel.: +49 89/6004-2231
E-Mail: salome.parra@unibw.de

Supported by:

- Federal Ministry of Education and Research
- FONA
- NaWaM
- ERWAS

Water IDEAS Conference 2016
Bologna, 20th October 2016
Salomé Parra